
DIGITAL AUTO MOTIVE ANALYSER MODEL No:90K

Thank you for purchasing the product. Manufactured to a high standard this product will, if used according to these instructions and properly maintained, give you years of trouble free performance.

IMPORTANT: PLEASE READ THESE INSTRUCTIONS CAREFULLY. NOTE THE SAFE OPERATIONAL REQUIREMENTS, WARNINGS & CAUTIONS. USE THE PRODUCT CORRECTLY AND WITH CARE FOR THE PURPOSE FOR WHICH IT IS INTENDED. FAILURE TO DO SO MAY CAUSE DAMAGE AND/OR PERSONAL INJURY AND WILL INVALIDATE THE WARRANTY. PLEASE KEEP THESE INSTRUCTIONS SAFE FOR FUTURE USE.

1. SAFETY INSTRUCTIONS

 $\sqrt{}$

1.1 PERSONAL PRECAUTIONS

When using this multimeter, please observe all normal safety rules concerning:

Protection against the dangers of electrical current.

Protection of the meter against misuse.

Full compliance with safety standards can only be guaranteed if used with the test leads supplied. If necessary, they must be replaced with genuine The test leads supplied with the same electronic ratings.

Failure to do so will invalidate the warranty.

- × DO NOT use leads if damaged or if the wire is bared in any way.
- × **DO NOT** use the meter if it has been damaged.

1.2 GENERAL SAFETY INSTRUCTIONS

WARNING! USE EXTREME CAUTION when working with high voltages.

 $\sqrt{}$ Familiarise yourself with the application and limitations of the multimeter as well as the potential hazards.

IF IN ANY DOUBT CONSULT A QUALIFIED ELECTRICIAN.

- √ Before commencing testing, follow instructions below and select the correct input sockets, function and range on the multimeter.
 √ When the meter is connected to a circuit, do not touch any unused meter terminals.
- √ When the magnitude of the value to be measured is unknown beforehand, set the range selector to the highest value available.
 √ Before rotating the range selector to change functions, disconnect test probes from the circuit under test.
- WARNING! Never perform resistance, transistor, diode or continuity measurements on live circuits.
- Always take care when working with voltages above 35V DCor
 25V ACrms. These voltages are considered a shock hazard.
- $\sqrt{}$ Always keep fingers behind the probe barriers whilst measuring and **DO NOT** use when hands are wet.
- **DO NOT** touch the test leads, tips or the circuit being tested.
- √ Choose the proper range and function for the required measurement. Do not try voltage or current measurements that may exceed the ratings marked on the Function/Range switch.
- When testing for the presence of a voltage or current, make sure the meter is functioning correctly. Take a reading of a known voltage or current before accepting a zero reading.
- DO NOT test voltages above 600V AC or DC- the circuitry of the multimeter will be destroyed.

- WARNING! NEVER connect the multimeter to a voltage source / live circuit when the rotary switch is set to any other function apart from Voltage testing..
- WARNING! Voltage checks on electrical outlets can be difficult and misleading because of the uncertainty of connection to the recessed electrical contacts. Other means should be used to ensure that the terminals are not "live".
- Avoid damaging the meter when testing voltage. Disconnect the test leads from the test points before changing functions.
- DO NOT attempt a voltage measurement with the test leads in

the 20A or the mA terminal.

- $\sqrt{}$ **ALWAYS** discharge filter capacitors in power supplies and disconnect the power when making resistance or diode tests.
- DO NOT use the multimeter in a potentially explosive atmosphere or where flammable material is present.
- $\sqrt{}$ ONLY operate the multimeter when the back cover is in place and fastened securely.
- $\sqrt{}$ If any abnormal readings are observed, the multimeter must be checked out by an authorised technician.
- $\sqrt{}$ **ALWAYS** turn off the multimeter and disconnect the test leads, before opening the back cover to replace the fuse or battery.
- $\sqrt{}$ When not in use, store the multimeter carefully in a safe, dry, childproof location out of direct sunlight. If storing for a long period of time, remove the battery. Storage temperature range: -15° Cto 50° C.
- **Note:** The warnings, cautions and instructions referred to in this manual cannot cover all possible conditions and situations that may occur. It must be understood that common sense and caution are factors which cannot be built into this product, but must be applied by the operator.
- WARNING! Engines produce carbon monoxide which is odourless and causes slower reaction time which could lead to serious injury. An engine which is operating should be in a well ventilated area, or the vehicle's exhaust should be connected to an adequate fume removal system.
- $\sqrt{}$ When working on a vehicle which is being tested or repaired ensure that the handbrake is on and the front wheels are chocked to avoid the vehicle moving and causing injury.

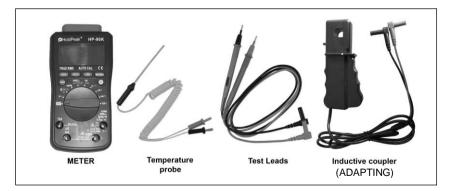
 $\sqrt{}$ Wear suitable eye protection when testing or repairing a vehicle.

- $\sqrt{}$ When measuring current, connect the meter in series with the load.
- $\sqrt{}$ Disconnect the live test lead before disconnecting the common test lead.
- $\sqrt{}$ The mA and the 20A terminals are protected by fuses. To avoid

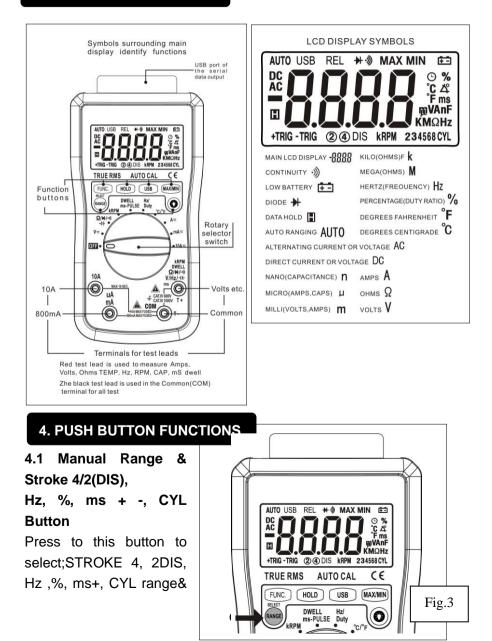
possible injury or damage, use only in circuits limited to 800mA or 20A for 30 seconds.

- $\sqrt{}$ To maintain the accuracy of the meter, replace the discharged battery immediately when the symbol '**BAT**' appears on the meter display.
- $\sqrt{}$ Avoid measurement errors from outside interference. Keep the meter away from spark plug and coil wires.
- Exceeding the electrical limits of this meter is dangerous and will expose you to serious or possibly fatal injury.
 Carefully read and understand the specification limits of this meter together with the warnings and cautions in this safety section.

FUNCTION	TERMINAL	INPUT LIMIT		
DC/AC Volts, O Ohm/Continuity/Diode, CAP.,IR-TEMP.Adaptor, Type-K TEMP., Hz, % Duty, Ms Dwell, RPM	V-Ω-RPM	CAT IV 600VoltsAC DC CAT III 750VoltsAC 1000V DC		
AC/DC	mA	600mA DC/AC		
AC/DC20A	20A	*20A DC/AC		
* 20 Amp measurement for 30 seconds maximum.				
• Ohms can not be measured if voltage is present, ohms can be measured				


only in a non-powered circuit. However, the meter is protected to 250 volts.

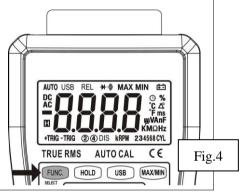
2.INTRODUCTION & SPECIFICATION


INTRODUCTION: Includes new generation, 15-function, auto-ranging automotive diagnostic multimeter. Digital display gives accurate indication of component outputs. Large, easy to read high contrast display with bright, white backlight. Workshop-tough, durable bi-composite case with integral stand and auto power shut-off. High speed processing circuitry reads standard automotive parameters including duty cycle and pulse width making this tool ideal for testing fuel injection systems. Features auto-ranging, and data hold functions with overload protection on all ranges. Includes relative functions including

Min/Max and Peak Hold. Supplied with Inductive Coupler, test probes and thermocouple in carry case.

SPECIFICATION		Mode	el No: 90K	Diode CheckYes
Tach (RPM)2-10c	cyl, 4-Stroke 60-9	9000 (x1)rpm, <mark>600-</mark> 1200	0 (x10)rpm	Back LightYes
Dwell:			4/5/6/8cyl	Display Hold:Yes
AC Voltage:		600mV, 6V, 60, 6	600V, <mark>750V</mark>	Auto Ranging:Yes
DC Voltage:		600mV, 6V, 60, 60	00V, 1000V	Inductive Coupler:Yes
AC Current:		60mA, 600m	A, 6A, 20A	Digits Height:20mm
DC Current:		60mA, 600m	A, 6A, 20A	Auto Power OffYes
Capacitance:	10nF, 100nF,	1000nF , 10 μ F, 100 ,	μ F, 10mF,	Low Battery Indicator:Yes
6	0	m	F	
Frequency:		0.001H	z-9.99MHz	Batteries (supplied):9V (PP9)
		0.001H		Batteries (supplied):9V (PP9) Hi-Impact Case:Yes
Duty Cycle:			.1.0-99.0%	
Duty Cycle:			.1.0-99.0% 0.1-10ms	Hi-Impact Case:Yes
Duty Cycle:			.1.0-99.0% 0.1-10ms	Hi-Impact Case:Yes Size (LxWxD):190x90x62mm
Duty Cycle: Pulse Width: Resistance:		0Ω, 6kΩ, 60kΩ, 600ł	.1.0-99.0% 0.1-10ms <Ω, 6MΩ, Ω	Hi-Impact Case:Yes Size (LxWxD):190x90x62mm
Duty Cycle: Pulse Width: Resistance:		0Ω, 6kΩ, 60kΩ, 600k Μ	.1.0-99.0% 0.1-10ms <Ω, 6MΩ, Ω	Hi-Impact Case:Yes Size (LxWxD):190x90x62mm
Duty Cycle: Pulse Width: Resistance: 6 Continuity: 2		0Ω, 6kΩ, 60kΩ, 600ł M <50Ω Continui	.1.0-99.0% 0.1-10ms α, 6ΜΩ, Ω ity Buzzer z	Hi-Impact Case:Yes Size (LxWxD):190x90x62mm

3. MAIN METER FEATURES

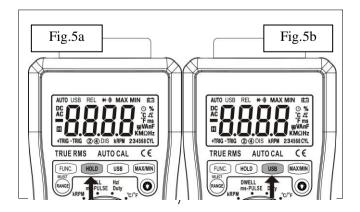

V/A/R/CAP/Hz manual Range.

4.1.1 Manual Ranging

The meter turns on in the autoranging mode. Press the Range button to go to manual ranging. The display icon "AUTO" will disappear. Each press of the range button will step to the next range as indicated by the units and decimal point location. Press and hold the Range button for two seconds to return to autoranging.

4.2 FUNC. Button

Press the FUNC. Push button to select the Second functions of blue symbol on the meter's panel.



4.3 Data Hold (fig.5a)

The Data Hold function allows the meter to "freeze" a measuremet for later reference.

4.3.1 Press the DATA HOLD button to "freeze" the reading on the display. The "**II**" symbol will appear in the display.

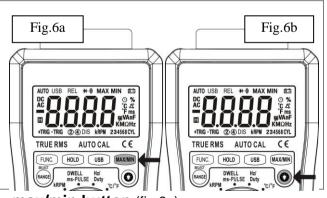
4.3.2 Press the DATA HOLD button again to return to normal

4.4 USB (fig.5b)

The USB function allows the meter serial data output to PC by the USB transmission

4.4.1 Connect the meter's and the computer's USB port with the USB cable.

4.4.2 Press the USB button to the "USB" symbol will appear in the display.


4.4.3 Run the **PC** software, click the **SET** menu. Select the **PART SET**. Then select the proper COM port.

4.4.4 Select the default sampling rate or you can select other desired sampling rate. Press the **OK** button to finish settings..

4.4.5 Now press the **Start** in the PC-LINK SOFT to measure and view the synchronic data or graph in the software interface.

4.4.6 To disable the serial data output function, press the "**USB**" key to disappear the symbol "**USB**".

4.4.7 More information about the PC SOFT, please refer to the Help topic including in the SOFT.

4.5 max/min button (fig.6a)

4.5.1 Press the MAX/MIN button to activate the MAX/MIN recording mode. The display icon "MAX" will appear. Press the MAX/MIN button again, The display icon "MIN" will appear. The

meter will go to manual ranging & display and hold the maximum or minimum reading and will update only when a new "max or min" occurs.

4.5.2. Press the MAX/MIN key again and a blinking "MAX MIN" will appear. The meter will display the MAX-MIN reading, To exit MAX/MIN mode press and hold the MAX/MIN key for 2 seconds.

4.6 Backlight button (fig.6b)

4.6.1 Press the BACKLIGHT button to turn the backlighting ON.4.6.2 Press the BACKLIGHT button again to turn the backlighting OFF.

5. METER FUNCTIONS

5.1 DC/AC Voltage

5.1.1 Select the "V \sim " range with the rotary switch, and press the FUNC. button to select DCV or ACV.

5.1.2 The meter will automatically select the best voltage range.

5.1.3 Insert Black lead in COM terminal.

5.1.4 Insert Red lead in V-Ω-RPM terminal

5.1.5 Touch the Black probe to ground or to the negative (-) circuit

5.1.6 Touch the Red probe to the circuit coming from the power source.

▲ IMPORTANT: Voltage must be measured in parallel (Red <u>pr</u>obe measuring circuit from power source).

WARNING: When measuring voltage, be sure the Red test lead is in the terminal marked "V". If the test lead is in an Amp (A) or Milliampere (mA) terminal, you may be injured or the meter damaged.

5.2 Resistance (Ω)

IMPORTANT: If you are testing an application that has capacitors in the circuit, be sure to turn the power OFF on the test circuit and discharge all capacitors. Accurate measurement is not possible if external or residual voltage is present.

5.2.1 Select the Resistance " Ω " range with the rotary switch and

the FUNC. button.

- 5.2.2 Insert Black lead in COM terminal.
- 5.2.3 Insert Red lead in V-Ω-RPM terminal.
- 5.2.4 Touch the test lead probes across the resistor to be tested.

5.3 Diode Check (→)

IMPORTANT: Turn the power OFF to the test circuit

5.2.1 Select the Diode "→+" range with the rotary switch and the FUNC. button.

5.3.2 Insert Black lead in COM terminal.

5.3.3 Insert Red lead in V-Ω-kRPM terminal

5.3.4 Touch the Black test probe to the negative (-) side of the diode.

5.3.5 Touch the Red test probe to the positive (+) side of the diode.

5.3.6 Reverse the probes: Black to the positive (+) side and Red to the negative(-) side.

Note: A "good" diode will read low in one direction and high in the

DIODE	(- to +)	Reverse probes (+ to -)	other	
C00D	0.4 to 0.9V	Over Limit (OL)	direction	the
GOOD	Over Limit (OL)	0.4 to 0.9V	when probes	the are
	Over Limit (OL)	1.0 to 3.0V	reversed	(or
	1.0 to 3.0V	Over Limit (OL)	vice vers	•
BAD	0.4 to 0.9V	0.4 to 0.9V	defective	
	Over Limit (OL)	Over Limit (OL)	diode	will
	0.000V	0.000V	have	the

same reading in both directions or read between 1.0 to 3.0 V. In both directions.

5.4 Audible Continuity ())IMPORTANT: Turn the power OFF on the test circuit

5.4.1 Select the Audible Continuity " \cdot) " function with the rotary switch and FUNC. Button.

5.4.2 Insert Black lead in COM terminal.

5.4.3 Insert Red lead in V- Ω -RPM terminal.

5.4.4 Connect one test probe to each end of the circuit to be tested.

5.4.5 If the circuit is complete, the meter will beep continuously.

5.4.6 If the circuit is open, there is no beep and the display shows OL (over limit).

5.5 CEAPACITANCE (CAP)

IMPORTANT: Turn the power OFF to the test circuit

- 5.5.1 Select the " \dashv ← " range with the rotary switch and the FUNC. button.
- 5.5.2 Insert Black lead in COM terminal.
- 5.5.3 Insert Red lead in V-Ω-RPM terminal.

CAUTION: When checking in-circuit capacitance, be sure that the circuit has all power removed and all capacitors are fully discharged.

5.5.4 Touch the test lead probes across the capacitance circuit to be tested.

5.5.5 Read the measured value from the LCD Display.

Note: (a) the measurement time of 10mF and 60mF modes is a little long (MAX Aprox.7s).

(b) In order to obtain an accurate reading, a capacitor must be discharged before measurement begins.

(c) Discharging through the chip is quite slow. We recommend the

user to discharge the capacitor with some other apparatus.

5.6 AC or DC Current (A)

▲ IMPORTANT: All current measured flows through the meter. It is important that you do not:

(A) Measure current greater than 600 Volts AC or DC, with respect to ground.

(B) Do Not Exceed 30 seconds when measuring continuous current between 1A-20A.

5.6.1 Select the "20A", "mA" or "uA" range with the rotary switch.

5.6.2 Press the FUNC. button to select AC or DC.

5.6.3 Insert the black lead into the COM Terminal.

5.6.4 Insert the red lead into the 20A or mA terminal (select 20A if you are unsure of the current draw).

▲ IMPORTANT: Turn OFF all power to the circuit or disconnect the circuit from the power source.

5.6.5 Connect the Red probe to the side of the circuit closest to the power source.

5.6.6 Connect the Black probe to the side of the circuit to ground.

5.6.7 Turn the power ON and test.

Note: Current must always be measured with the meter test probes connected in series, as described.

5.7 Temperature (°C/°F) IMPORTANT: To avoid heat damage to the meter, keep it away from sources of very high temperature. The life of the Temperature Probe is also reduced when subjected to very high temperatures. Probe operating range is -58° to 482° F.

5.7.1 Select the °C or °F function with the rotary switch and the FUNC. button.

5.7.2 Connect the black test lead of the K-type thermocouple to "T-" socket and the red test lead to the " T+ " socket.

5.7.3 Touch the end of the temperature sensor to the area or surface of the object to be measured.

5.8 Frequency(Hz)

5.8.1 Select the "Hz" Frequency function with the rotary switch and the FUNC. button.

5.8.2 Insert the black lead into the COM terminal.

5.8.3 Insert the red lead into the V- Ω -kRPM terminal.

5.8.4 Connect the Black test probe to ground.

5.8.5 Connect the Red test probe to the "signal out" wire of the sensor to beTested.

5.9 Dwell angle (🗳)

5.9.1 Select the "DWELL" function with the rotary switch and the FUNC. button.

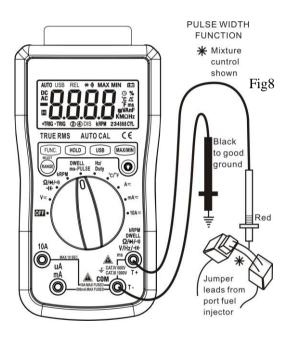
5.9.2 Insert the Black lead into the COM terminal.

5.9.3 Insert the Red lead in V-Ω-kRPM terminal.

5.9.4 Connect the Black test probe to ground.

5.9.5 Connect the Red test probe to the wire that connects to the breaker points (see illustration).

5.10 Duty Cycle (%) (fig.7)


5.10.1 Select the "Duty" function with the rotary switch and the FUNC. button.

5.10.2 Insert the black lead into the COM terminal.

- 5.10.3 Insert the red lead into the V- Ω -kRPM terminal.
- 5.10.4 Connect the Black test probe to ground.
- 5.10.5 Connect the Red test probe to the signal wire circuit.

The illustration for a mixture control solenoid is shown with the metering rod in the closed position. The meter will display the percentage of time the plunger is in the closed position during one duty cycle.

5.11 ms-PULSE (Pulse Width) & ms- PERIOD (Period)

5.11.1 Pulse Width is the length of time an actuator is energized. For example, fuel injectors are activated by an electronic pulse from the Engine Control Module (ECM). This pulse generates a magnetic field that pulls the injector nozzle valve open. The pulse ends and the injector nozzle is closed. This open to close time is the Pulse Width and is measured in milliseconds(ms). The most common automotive application for measuring pulse width is on fuel injectors. You can also measure the pulse width of the fuel mixture control solenoid and the idle air control motor.

This exercise shows how to measure Pulse Width (mS) on Port Fuel injectors.

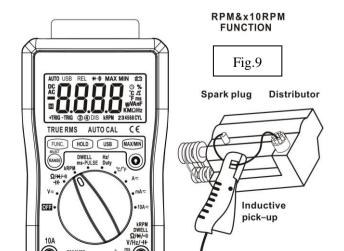
5.11.2 Select the "mS-Pulse" function with the rotary switch and the FUNC. button..

5.11.3 Press the RANGE button to select negative (-)trigger Width or positive(+)trigger Width measure.

NOTE: The applied time for most fuel injectors is displayed on the negative (-) slope.

5.11.4 Insert the black lead into the COM terminal.

5.11.5 Insert the red lead into the V- Ω -RPM terminal.


5.11.6 Connect jumper wires between the fuel injector and the harness connector.

5.11.7 Touch the Black test probe to a good ground at the fuel injector or the negative (-) vehicle battery post.

5.11.8 Touch the Red test probe to the fuel injector solenoid driver input on the jumper cable.

5.11.9 Start the engine. A pulse width in milliseconds should be read.

Note: Initially, the unit will read "OL", then readings will descend and stabilize to the actual pulse.width. If "OL" remains, re-check your connections.

(ADAPTING)

5.12. RPM

5.12.1. Using the rotary switch, select either the kRPM range .

5.12.2. Press RANGE button to select through RPM for (4)

4-stroke, RPM for (2) 2-stroke and DIS ignitions.

5.12.3. Connect the inductive pickup leads to the meter.

5.12.4.Insert the black lead into the COM terminal.

5.12.5. Insert the red lead into the V-Ω-RPM Terminal.

5.12.6. Open the inductive pickup and place it onto a spark plug wire. If no reading is received, unhook the clamp, turn it over and connect again.

NoteS:

5.12.7. Position the inductive pick-up as far away from the distributor and the exhaust manifold as possible.

5.12.8. Position the inductive pick-up to within six inches of the spark plug or move it to another plug wire if no reading or an erratic reading is received.

5.12.9. RPM 4 (4) For RPM of 4-stroke engines which have 1 ignition on every 4 engine Strokes

5.12.10 RPM 2 (2) : For RPM of DIS (Distributorless Ignition System) & 2-stroke engines which Have 1 ignition on every 2 engine strokes.

PLEASE NOTE - THE RPM PICK-UP HAS AN ADJUSTABLE SENSITIVITY SWITCH THAT CAN ALSO BE USED TO CORRECT AN UNSTABLE READING.

GENERAL INSTRUMENT SPECIFICATION		
Instrument complies with	IEC 1010-1 EN61010-1	

Insulation	Class 2, Double Insulation
Overvoltage category	CATIII1000V/CATIV600V
Display	6000 counts LCD display with function indication
Polarity	Automatic, (-) negative polarity indication.
Overrange	"OL" marks indication
Low battery indication	" is displayed when the battery voltage drops below the operating level
Measurement rate	3 times per second, nominal
Auto power off	Meter automatically shuts down after approx. 15 minutes of inactivity
Operating environment	0°C to 50°C (32°F to 122°F) at< 70% relative humidity.
Storage temperature	-20°C to 60°C (-4°F to 140°F) at< 80% relative humidity.
For inside use, max height	2000m
Pollution degree	2
Power	One 9V battery (PP9)
Dimensions	166x88x51mm
Weight	320g(include battery)

6.ELECTRICAL SPECIFICATIONS

Electrical Specification (ACCURACY).

Accuracy is given as ± ([% of reading] + [number of least significantdigits]) at

18°C to 28°C (65°F to 83°F), with relative humudity up to 70%.

DC VOLTAGE				
Range	Resolution	Accuracy		
600.0mV	0.1mV	±1.5% of rdg ± 5dgts		
6.000V	1mV			
60.00V	10mV	±1.0% of rdg ± 5dgts		
600.0V	100mV			
600V/	1V	1 50/ of rdg L Edgto		
1000V	IV	$\pm 1.5\%$ of rdg ± 5 dgts		
	Input Impedance: 10MΩ			

DWELL ANGLE				
Cylinder	Range		Resolution	Accuracy
2CYL	0 ~ 180º			
3CYL	0 ~ 120°			
4CYL	0 ~ 90.0°		0.1°	±2.5% of rdg
5CYL	0 ~ 72.0°		0.1°	± 10dgts
6CYL	0 ~ 60.0°			
8CYL	0 ~ 45.0°			
AC VOLTAGE				
Range	Resolution	n	Acci	uracy
600.0mV	0.1mV		±2.0% of r	dg ± 10dgts
6.000V	1mV		±1.5% of I	rdg ± 5dgts
60.00V	10mV	±1.5% of rdg ± 8dg		rda + 8dats
600.0V	100mV		1.070 011	ug ± ougio
600V/	1V		+2.0% of	rda + 4date
750V	IV		±2.0 % 01 1	rdg ± 4dgts
Input Impe	Input Impedance: $10M\Omega$ / Frequency Range 50 to			Range 50 to
60Hz				

DC CURRENT		
Range	Resolution	Accuracy
600.0uA	0.1uA	
6000Ua	1uA	1 EV of rdg 1 2date
60.00mA	10uA	$\pm 1.5\%$ of rdg ± 3 dgts
600.0mA	100uA	
20A	10mA	±2.5% of rdg ± 5dgts

Overload Protection: 0.8A / 250V and 20A / 250V Fuse Maximum Input: 600mA DC or 600mA AC RMS on mA ranges,20A DC or AC RMS on 20A range.

AC CURRENT		
Range	Resolution	Accuracy
60.00mA	10uA	1 90/ of rdg 1 Edgto
600.0mA	100uA	$\pm 1.8\%$ of rdg ± 5 dgts
20A	10mA	±3.0% of rdg ± 7dgts

Overload Protection: $0.8A\,/\,250V$ and $20A\,/\,250V$ Fuse

Frequency Range: 50 to 60Hz.

Maximum Input:

600mA DC or 600mA AC RMS on mA ranges,

RPM (Tach)			
	Range	Resolution	Accuracy
RPM	60 ~ 9000 RPM	1 RPM	
4	600 ~ 12000 RPM. (x10 RPM)	10RPM	±2.5% of rdg
RPM	60 ~ 9000 RPM	1 RPM	± 10dgts
2/DIS	600 ~ 12000 RPM. (x10 RPM)	10RPM	
	Effect Reading: >60RPM		

20A DC or AC RMS on 20A range.

RESISTANCE		
Range	Resolution	Accuracy
600.0Ω	0.1Ω	±1.5% of rdg ± 5dgts
6.000kΩ	1Ω	
60.00kΩ	10Ω	$\pm 1.0\%$ of rdg ± 5 dgts
600.0kΩ	100Ω	
6.000MΩ	1kΩ	

DIODE TEST				
Test Currer	nt Resolution	Resolution Accuracy		
1.0mA	1mV	±5% of rdg ± 15 dgts		
typical	IIIIV	$\pm 5\%$ of fug ± 15 ug s		
Open circuit voltage:3.0V DC typical				
60.00MΩ	10kΩ	10kΩ ±2.5% of rdg ± 10dgts		

CAPACITANCE			
Range	Resolution	Accuracy	
9.999nF	1pF	±2.5% of rdg ± 20dgts	
99.99nF	1pF		
999.9nF	0.1nF		
9.999uF	1nF	±2.5% of rdg ± 10dgts	
99.99uF	10nF		
999.9uF	0.1uF		
9.999mF	0.001mF	$\pm 10\%$ of rdg ± 20 dgts	
99.99mF	10.00mF		

FREQUENCY			
Range	Resolution	Sensitivity	Accuracy
9.999Hz	0.001Hz	>1V RMS	±0.1% of rdg ± 5dgts
99.99Hz	0.01Hz		
999.9Hz	0.1Hz		
9.999kHz	1Hz		
99.99kHz	10 Hz		
999.9 kHz	100 Hz		
9.999 MHz	1kHz		

TYPE K TEMPERATURE		
Range	Resolution	Accuracy
-30°C ~ 1000°C	1.0°C	± 3 % of rdg ± 5°C/8°F
1832°F	1.0°F	(Meter only)

AUDIBLE CONTINUITY TEST
Audible threshold:< 50Ω
Test Current:< 1mA DC typical

PULSE WIDTH		
Range	Resolution	Accuracy
1.0 ~ 10.0ms	0.1ms	± 2% of rdg ± 20dgts

DUTY CYCLE		
Range	Resolution	Accuracy
1.0% ~	0.40/	1 20/ of rdg 1 Edgets
99.0%	0.1%	$\pm 2\%$ of rdg ± 5 dgts

Pulse width: >100us, <100ms Frequency width: 5Hz ~ 100kHz Sensitivity: >5V RMS

7. MAINTENANCE

- WARNING! Do not attempt to repair or service the analyser unless you are qualified to do so and have the relevan calibration, performance test, and service information. To avoid electrical shock or damage to the meter do not get water inside the case.
- 7.1 Periodically wipe the case with a damp cloth and mild detergent.Do not use solvents.
- 7.2 Turn the analyser off when not in use and remove the battery if stored for a long period of time.
- 7.3 Do not store the analyser in a place of high humidity or high temperature.

7.4 Replacing The Battery

- WARNING! To avoid electric shock, disconnect the test leads from the analyser before removing the battery Cover.
- 7.4.1 When the battery becomes exhausted or drops below the operating voltage, the battery symbol will be appear in the left hand side of the display.
- 7.4.2 Open the battery cover by loosening the two screws using a

small cross head screwdriver.

- 7.4.3 Remove the old battery and insert the new one, observing the correct polarity.
- 7.4.4 Replace the battery cover and secure with the two screws.
- WARNING! To avoid electric shock, do not operate the analyser until the battery cover is secured in place.
- 7.5. Replacing the Fuses.
- **WARNING!** To avoid electric shock, disconnect the test leads from the analyser before accessing the fuses.
- 7.5.1 Open the rear cover by loosening the six screws using a small cross head screwdriver. Gently ease the rear cover off.
- 7.5.2 Remove the old fuse from its holder by gently pulling it out. Take care not to touch any other internal parts of the analyser.
- 7.5.3 Install the new fuse into its holder by gently pushing it in. Note: Always use a fuse of the correct size and value.

Fuse Ratings:

20A/250V, 6.3 x 32mm fast acting ceramic type for the 20A range.

0.5A/250V, 5 x 20mm fast acting ceramic type for the 800mA range.

7.5.4 Replace the rear cover and secure with the six screws.

WARNING! To avoid electric shock, do not use the analyser until it has been fully re-assembled.

